Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.213
Filtrar
1.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558122

RESUMO

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Assuntos
Melatonina , Glândula Pineal , Animais , Glândula Pineal/metabolismo , Genes Homeobox , Melatonina/metabolismo , Roedores/genética , Roedores/metabolismo , Fatores de Transcrição/metabolismo , Ritmo Circadiano
2.
Chronobiol Int ; 41(3): 329-346, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516993

RESUMO

The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.


Assuntos
Melatonina , Perciformes , Glândula Pineal , Animais , Ritmo Circadiano/fisiologia , Fotoperíodo , Glândula Pineal/metabolismo , Melatonina/metabolismo , Expressão Gênica , Perciformes/genética , Perciformes/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
3.
J Pineal Res ; 76(1): e12939, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241679

RESUMO

Temporal signals such as light and temperature cycles profoundly modulate animal physiology and behaviour. Via endogenous timing mechanisms which are regulated by these signals, organisms can anticipate cyclic environmental changes and thereby enhance their fitness. The pineal gland in fish, through the secretion of melatonin, appears to play a critical role in the circadian system, most likely acting as an element of the circadian clock system. An important output of this circadian clock is the locomotor activity circadian rhythm which is adapted to the photoperiod and thus determines whether animals are diurnal or nocturnal. By using a genetically modified zebrafish strain known as Tg (Xla.Eef1a1:Cau.asip1)iim04, which expresses a higher level of the agouti signalling protein 1 (Asip1), an endogenous antagonist of the melanocortin system, we observed a complete disruption of locomotor activity patterns, which correlates with the ablation of the melatonin daily rhythm. Consistent with this, in vitro experiments also demonstrated that Asip1 inhibits melatonin secretion from the zebrafish pineal gland, most likely through the melanocortin receptors expressed in this gland. Asip1 overexpression also disrupted the expression of core clock genes, including per1a and clock1a, thus blunting circadian oscillation. Collectively, these results implicate the melanocortin system as playing an important role in modulating pineal physiology and, therefore, circadian organisation in zebrafish.


Assuntos
Melanocortinas , Melatonina , Glândula Pineal , Animais , Proteína Agouti Sinalizadora/genética , Proteína Agouti Sinalizadora/metabolismo , Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Peixe-Zebra/genética , Melanocortinas/metabolismo
4.
Pathol Res Pract ; 254: 155160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277748

RESUMO

Melatonin (MLT) is an endogenous hormone produced by pineal gland which possess promising anti-tumor effects. Anti-inflammatory and anti-oxidant properties of MLT, along with its immunomodulatory, proapoptotic, and anti-angiogenic properties, are often referred to the main mechanisms of its anti-tumor effects. Recent evidence has suggested that epigenetic alterations are also involved in the anti-tumor properties of MLT. Among these MLT-induced epigenetic alterations is modulation of the expression of several oncogenic and tumor suppressor microRNAs(miRNAs). MiRNAs are among the most promising and potential therapeutic and diagnostic tools in different diseases and enhanced the development of better therapeutic drugs. Suppression of oncomicroRNAs such as microRNA-21, - 20a, and - 27a as well as, up-regulation of microRNA-34 a/c are among the most important effects of MLT on microRNAs homeostasis. Recently, miR-21 has attracted the attention of scientists due to the its wide range of effects on different cancers and diseases. Regulation of this RNA may be a key to the development of better therapeutic targets. The present review will summarize the findings of in vitro and experimental studies of MLT-induced impacts on the expression of microRNAs which are involved in different models and numerous stages of tumor initiation, growth, metastasis, and chemo-resistance.


Assuntos
Melatonina , MicroRNAs , Humanos , Melatonina/metabolismo , Melatonina/uso terapêutico , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Glândula Pineal/metabolismo , Glândula Pineal/patologia , Animais
5.
Cell Mol Life Sci ; 81(1): 61, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279053

RESUMO

Previous studies have demonstrated that α-synuclein (α-SYN) is closely associated with rapid eye movement sleep behavior disorder (RBD) related to several neurodegenerative disorders. However, the exact molecular mechanisms are still rarely investigated. In the present study, we found that in the α-SYNA53T induced RBD-like behavior mouse model, the melatonin level in the plasma and pineal gland were significantly decreased. To elucidate the underlying mechanism of α-SYN-induced melatonin reduction, we investigated the effect of α-SYN in melatonin biosynthesis. Our findings showed that α-SYN reduced the level and activity of melatonin synthesis enzyme acetylserotonin O-methyltransferase (ASMT) in the pineal gland and in the cell cultures. In addition, we found that microtubule-associated protein 1 light chain 3 beta (LC3B) as an important autophagy adapter is involved in the degradation of ASMT. Immunoprecipitation assays revealed that α-SYN increases the binding between LC3B and ASMT, leading to ASMT degradation and a consequent reduction in melatonin biosynthesis. Collectively, our results demonstrate the molecular mechanisms of α-SYN in melatonin biosynthesis, indicating that melatonin is an important molecule involved in the α-SYN-associated RBD-like behaviors, which may provide a potential therapeutic target for RBD of Parkinson's disease.


Assuntos
Melatonina , Glândula Pineal , Camundongos , Animais , Melatonina/metabolismo , Acetilserotonina O-Metiltransferasa/química , Acetilserotonina O-Metiltransferasa/metabolismo , alfa-Sinucleína/metabolismo , Glândula Pineal/metabolismo
6.
J Pineal Res ; 76(1): e12923, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990784

RESUMO

Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , NF-kappa B/metabolismo , Glândula Pineal/metabolismo , Melatonina/farmacologia , Interleucina-10/metabolismo , Transdução de Sinais
7.
Neuroendocrinology ; 114(3): 291-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38029731

RESUMO

INTRODUCTION: The superficial pineal gland of the Sprague Dawley rat is a neuroendocrine structure secreting the hormone melatonin. By use of block face scanning electron microscopy, our aim here was to identify the 3-dimensional ultrastructure of the gland. METHODS: A series of 2,731 block face images of the rat pineal tissue, 30 nm in thickness, was obtained in a Teneo volume scanning electron microscope and used for 3-dimensional reconstruction by use of the TrakEM2-plugin in the ImageJ software. Thin sections of the tissue were cut for transmission electron microscopy. RESULTS: Our analyses revealed cellular bulbous processes, containing 50-100 nm clear vesicles, that emerged from a neck-like area at the cell body of the pinealocyte. These bulbous processes extend into small canaliculi located in the center of parenchymal folliculi of the gland as well as into the perivascular spaces. Junctional complexes, comprising both gap and tight junctions, connected the lateral cellular membranes of the pinealocytes, where the bulbous processes emerged from the cell bodies. The canaliculi were, via the extracellular space, connected to the perivascular spaces. DISCUSSION: The junctional complexes reported here would prevent a substance, released from the vesicles in the bulbous processes, from targeting the cell body from which they emerge. In line with previous combined morphological and biochemical demonstrations of glutamate located in clear vesicles of bulbous processes in the rat pineal gland, our data ultrastructurally support the concept that bulbous processes could participate in a paracrine glutamatergic inhibition of the melatonin secretion in the pineal gland. CONCLUSION: Bulbous secretory projections separated from the cell body by a junctional complex represents a new feature of neuroendocrine cells.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , Corpo Celular , Ratos Sprague-Dawley , Melatonina/metabolismo , Glândula Pineal/metabolismo
8.
J Pineal Res ; 76(1): e12927, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018267

RESUMO

The pineal gland has evolved from a photoreceptive organ in fish to a neuroendocrine organ in mammals. This study integrated multiple daytime single-cell RNA-seq datasets from the pineal glands of zebrafish, rats, and monkeys, providing a detailed examination of the evolutionary transition at single-cell resolution. We identified key factors responsible for the anatomical and functional transformation of the pineal gland. We retrieved and integrated daytime single-cell transcriptomic datasets from the pineal glands of zebrafish, rats, and monkeys, resulting in a total of 22 431 cells after rigorous quality filtering. Comparative analysis was then conducted to elucidate the evolution of pineal cells, their photosensitivity, their role in melatonin production, and the signaling processes within the glands of these species. Our analysis identified distinct cellular compositions of the pineal gland in zebrafish, rats, and monkeys. Zebrafish photoreceptors exhibited comprehensive phototransduction gene expression, while specific genes, including transducin (Gngt1, Gnb3, and Gngt2) and phosducin (Pdc), were consistently present in mammalian pinealocytes. We found transcriptional similarities between the pineal gland and retina, underscoring shared evolutionary and functional pathways. Zebrafish displayed unique light-responsive circadian gene activity compared to rats and monkeys. Key ligand-receptor interactions were identified, especially involving MDK and PTN, influencing melatonin synthesis across species. Furthermore, we observed species-specific GPCR (G protein-coupled receptors) expressions related to melatonin synthesis and their alignment with retinal expressions. Our findings also highlighted specific transcription factors (TFs) and regulatory networks associated with pineal gland evolution and function. Our study provides a detailed analysis of the pineal gland's evolution from fish to mammals. We identified key transcriptional changes and controls that highlight the gland's functional diversity. Notably, we found significant ligand-receptor interactions influencing melatonin synthesis and demonstrated parallels between pineal and retinal expressions. These insights enhance our understanding of the pineal gland's role in phototransduction, melatonin production, and circadian rhythms in vertebrates.


Assuntos
Melatonina , Glândula Pineal , Animais , Ratos , Glândula Pineal/metabolismo , Melatonina/metabolismo , Peixe-Zebra/genética , Ligantes , Ritmo Circadiano/genética , Mamíferos/metabolismo
9.
Stem Cell Rev Rep ; 20(1): 237-246, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812364

RESUMO

Hematopoietic stem progenitor cells (HSPCs) follow the diurnal circulation rhythm in peripheral blood (PB) with nadir during late night and peak at early morning hours. The level of these cells in PB correlates with activation of innate immunity pathways, including complement cascade (ComC) that drives activation of Nlrp3 inflammasome. To support this, mice both in defective ComC activation as well as Nlrp3 inflammasome do not show typical changes in the diurnal level of circulating HSPCs. Migration of HSPCs is also impaired at the intracellular level by the anti-inflammatory enzyme heme oxygenase-1 (HO-1) which is an inhibitor of Nlrp3 inflammasome. It is also well known that circadian rhythm mediates PB level of melatonin released from the pineal gland. Since trafficking of HSPCs is driven by innate immunity-induced sterile inflammation and melatonin has an anti-inflammatory effect, we hypothesized that melatonin could negatively impact the release of HSPCs from BM into PB by inhibiting Nlrp3 inflammasome activation. We provide an evidence that melatonin being a ''sleep regulating pineal hormone'' directly inhibits migration of HSPCs both in vitro migration assays and in vivo during pharmacological mobilization. This correlated with inhibition of cholesterol synthesis required for a proper membrane lipid raft (MLRs) formation and an increase in expression of HO-1-an inhibitor of Nlrp3 inflammasome. Since melatonin is a commonly used drug, this should be considered while preparing a patient for the procedure of HSPCs mobilization. More importantly, our studies shed more mechanistic light on a role of melatonin in the diurnal circulation of HSPCs.


Assuntos
Melatonina , Glândula Pineal , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Heme Oxigenase-1/metabolismo , Células-Tronco Hematopoéticas , Anti-Inflamatórios , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
J Pineal Res ; 76(1): e12926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146602

RESUMO

Melatonin is a small natural compound, so called a neuro-hormone that is synthesized mainly in pineal gland in animals. Its main role is to master the clock of the body, under the surveillance of light. In other words, it transfers the information concerning night and day to the peripheral organs which, without it, could not "know" which part of the circadian rhythm the body is in. Besides its main circadian and circannual rhythms mastering, melatonin is reported to be a radical scavenger and/or an antioxidant. Because radical scavengers are chemical species able to neutralize highly reactive and toxic species such as reactive oxygen species, one would like to transfer this property to living system, despite impossibilities already largely reported in the literature. In the present commentary, we refresh the memory of the readers with this notion of radical scavenger, and review the possible evidence that melatonin could be an in vivo radical scavenger, while we only marginally discuss here the fact that melatonin is a molecular antioxidant, a feature that merits a review on its own. We conclude four things: (i) the evidence that melatonin is a scavenger in acellular systems is overwhelming and could not be doubted; (ii) the transposition of this property in living (animal) systems is (a) theoretically impossible and (b) not proven in any system reported in the literature where most of the time, the delay of the action of melatonin is over several hours, thus signing a probable induction of cellular enzymatic antioxidant defenses; (iii) this last fact needs a confirmation through the discovery of a nuclear factor-a key relay in induction processes-that binds melatonin and is activated by it and (iv) we also gather the very important description of the radical scavenging capacity of melatonin in acellular systems that is now proven and shared by many other double bond-bearing molecules. We finally discussed briefly on the reason-scientific or else-that led this description, and the consequences of this claim, in research, in physiology, in pathology, but most disturbingly in therapeutics where a vast amount of money, hope, and patient bien-être are at stake.


Assuntos
Melatonina , Glândula Pineal , Animais , Humanos , Melatonina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Glândula Pineal/metabolismo , Ritmo Circadiano/fisiologia , Espécies Reativas de Oxigênio/metabolismo
11.
J Pineal Res ; 75(4): e12909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721126

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative brain disorder associated with uncontrolled body movements, cognitive decline, and reduced circulating melatonin levels. Melatonin is a potent antioxidant and exogenous melatonin treatment is neuroprotective in experimental HD models. In neurons, melatonin is exclusively synthesized in the mitochondrial matrix. Thus, we investigated the integrity of melatonin biosynthesis pathways in pineal and extrapineal brain areas in human HD brain samples, in the R6/2 mouse model of HD and in full-length mutant huntingtin knock-in cells. Aralkylamine N-acetyltransferase (AANAT) is the rate-limiting step enzyme in the melatonin biosynthetic pathway. We found that AANAT expression is significantly decreased in the pineal gland and the striatum of HD patients compared to normal controls. In the R6/2 mouse forebrain, AANAT protein expression was decreased in synaptosomal, but not nonsynaptosomal, mitochondria and was associated with decreased synaptosomal melatonin levels compared to wild type mice. We also demonstrate sequestration of AANAT in mutant-huntingtin protein aggregates likely resulting in decreased AANAT bioavailability. Paradoxically, AANAT mRNA expression is increased in tissues where AANAT protein expression is decreased, suggesting a potential feedback loop that is, ultimately unsuccessful. In conclusion, we demonstrate that pineal, extrapineal, and synaptosomal melatonin levels are compromised in the brains of HD patients and R6/2 mice due, at least in part, to protein aggregation.


Assuntos
Doença de Huntington , Melatonina , Glândula Pineal , Humanos , Camundongos , Animais , Melatonina/metabolismo , Glândula Pineal/metabolismo
12.
Microsc Microanal ; 29(6): 2037-2052, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738357

RESUMO

Poor sleep standards are common in everyday life; it is frequently linked to a rise in stress levels. The adrenal gland interacts physiologically with the pineal gland in the stress response. Pineal gland is a small endocrine organ that modulates sleep patterns. This work aimed to evaluate the inverted light-dark cycle rhythm on the histological changes within the adrenal cortex and pineal gland in adult male albino rats. Twenty adult male albino rats were equally divided into two groups: For the first control group, animals were kept on daylight-darkness for 12-12 h. The second group was kept under an inverted 12- to 12-h light-darkness cycle for 4 weeks. Adrenal sections were subjected to biochemical, histological, and immunohistochemical study. Inverted light-dark cycle group recorded a significant elevation of plasma corticosterone, tissue malondialdehyde, tumor necrosis factor-α, and interleukin-1ß (IL-1ß) associated with a significant reduction of catalase and superoxide dismutase. Adrenal cortex showed biochemical and histological changes. Pineal glands also showed loss of lobular architecture. A significant upregulation in activated inducible nitric oxide synthase (iNOS) and B-cell lymphoma-associated X (Bax) immunohistochemical expression was recorded in adrenal cortex associating with downregulation in B-cell lymphoma 2 (Bcl-2). It could be concluded that subchronic inverted light-dark cycle exerted direct effects on adrenal cortex and the pineal glands.


Assuntos
Córtex Suprarrenal , Melatonina , Glândula Pineal , Ratos , Masculino , Animais , Glândula Pineal/metabolismo , Fotoperíodo , Melatonina/metabolismo , Melatonina/farmacologia , Ritmo Circadiano/fisiologia , Luz
13.
J Pineal Res ; 75(4): e12906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649458

RESUMO

In 1992, a paper reported that the melatonin content of the rat duodenum was 24 000 ± 2000 pg/g tissue (range: 4000-100 000 pg/g) while the pineal melatonin content was 580 000 ± 36 000 pg/g. The data has been used for the last 30 years to infer that the gut produces 400 hundred times more melatonin than the pineal gland and that it is the source of plasma melatonin during the daytime. No-one has ever challenged the statement. In this review, evidence is summarised from the literature that pinealectomy eliminates melatonin from the circulation and that studies to the contrary have relied upon poorly validated immunoassays that overstate the levels. Similarly studies that have reported increases in plasma melatonin following tryptophan administration failed to account for cross reactivity of tryptophan and its metabolites in immunoassays. The most extraordinary observation from the literature is that in those studies that have measured melatonin in the gut since 1992, the tissue content is vastly lower than the original report, even when the methodology used could be overestimating the melatonin content due to cross reactivity. Using the more contemporary results we can calculate that rather than a 400:1 ratio of duodenum: pineal melatonin, a ratio of 0.05-0.19: 1 is likely. The gut is not a major extra-pineal source of melatonin; indeed it may well not produce any.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , Melatonina/metabolismo , Glândula Pineal/metabolismo , Triptofano/metabolismo , Ritmo Circadiano , Mamíferos/metabolismo
14.
J Neurosci Res ; 101(11): 1737-1756, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551165

RESUMO

The circadian clock is one of the most important homeostatic systems regulating the majority of physiological functions. Its proper development contributes significantly to the maintenance of health in adulthood. Methadone is recommended for the treatment of opioid use disorders during pregnancy, increasing the number of children prenatally exposed to long-acting opioids. Although early-life opioid exposure has been studied for a number of behavioral and physiological changes observed later in life, information on the relationship between the effects of methadone exposure and circadian system development is lacking. Using a rat model, we investigated the effects of prenatal and early postnatal methadone administration on the maturation of the circadian clockwork in the suprachiasmatic nucleus (SCN) and liver, the rhythm of aralkylamine N-acetyltransferase (AA-NAT) activity in the pineal gland, and gene expression in the livers of 20-day-old rats. Our data show that repeated administration of methadone to pregnant and lactating mothers has significant effect on rhythmic gene expression in the SCN and livers and on the rhythm of AA-NAT in the offspring. Similar to previous studies with morphine, the rhythm amplitudes of the clock genes in the SCN and liver were unchanged or enhanced. However, six of seven specific genes in the liver showed significant downregulation of their expression, compared to the controls in at least one experimental group. Importantly, the amplitude of the AA-NAT rhythm was significantly reduced in all methadone-treated groups. As there is a strong correlation with melatonin levels, this result could be of importance for clinical practice.


Assuntos
Melatonina , Glândula Pineal , Gravidez , Feminino , Ratos , Animais , Metadona/metabolismo , Metadona/farmacologia , Lactação , Ritmo Circadiano/fisiologia , Glândula Pineal/metabolismo , Melatonina/farmacologia , Núcleo Supraquiasmático/fisiologia
15.
Clin Oral Investig ; 27(9): 5353-5365, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454327

RESUMO

OBJECTIVE: Herein, we evaluated pinealectomy-induced melatonin absence to determine its effects on craniofacial and dental development in the offspring. DESIGN: Female Wistar rats in three groups, i.e., intact pregnant rats, pinealectomized pregnant rats (PINX), and pinealectomized pregnant rats subjected to oral melatonin replacement therapy, were crossed 30 days after surgery. The heads of 7-day-old pups were harvested for cephalometric and histological analyses, and maxillae and incisors were collected for mRNA expression analysis. RESULTS: The PINX pups exhibited a reduction in neurocranial and facial parameters such as a decrease in alveolar bone area, incisor size and proliferation, and an increase in odontoblasts and the dentin layer. Based on incisor mRNA expression analysis, we found that Dmp1 expression was upregulated, whereas Col1a1 expression was downregulated. Maxillary mRNA expression revealed that Rankl expression was upregulated, whereas that of Opn and Osx was downregulated. CONCLUSION: Our results demonstrated that the absence of maternal melatonin during early life could affect dental and maxillary development in offspring, as well as delay odontogenesis and osteogenesis in maxillary tissues. CLINICAL RELEVANCE: Our findings suggest that disruptions or a lack of melatonin during pregnancy may cause changes in craniofacial and dental development, at least in animal experiments; however, in humans, these feedings are still poorly understood, and thus careful evaluations of melatonin levels in humans need to be investigated in craniofacial alterations.


Assuntos
Melatonina , Glândula Pineal , Gravidez , Humanos , Ratos , Animais , Feminino , Melatonina/farmacologia , Melatonina/metabolismo , Ratos Wistar , Glândula Pineal/metabolismo , Glândula Pineal/cirurgia , RNA Mensageiro
16.
Science ; 381(6655): 270-271, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471547
17.
J Pineal Res ; 75(2): e12893, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37349875

RESUMO

Circadian clock gene expression in the suprachiasmatic nucleus (SCN) controls 24 h rhythms in body functions, but clock genes are also expressed in extra-hypothalamic tissues, including the melatonin-producing pineal gland. The nocturnal increase in pineal melatonin synthesis is a hallmark in circadian biology, but the role of local clock gene oscillations in the mammalian pineal gland is unknown. The aim of this work is to determine the role of clock genes in endocrine function of the pineal gland with focus on the Aanat transcript encoding the rhythm-generating enzyme of melatonin synthesis. Using the rat as a model, we here established 24 h expression patterns of clock genes in the pineal gland in vivo. Lesion studies showed that rhythmic clock gene expression in the pineal gland to a large extent depends on the SCN; further, clock gene rhythms could be re-established in cultured pineal cells synchronized by rhythmic stimulation with norepinephrine in 12 h pulses, suggesting that pineal cells house a slave oscillator controlled by adrenergic signaling in the gland. Histological analyses showed that clock genes are expressed in pinealocytes and colocalize with Aanat transcripts, thus potentially enabling clock gene products to control cellular melatonin production. To test this, cultured pineal cells were transfected using small interfering RNA to knock down clock gene expression. While successful knockdown of Per1 had a minor effect on Aanat, Clock knockdown produced a marked overexpression of Aanat in the pinealocytes. Our study suggests that SCN-dependent rhythmic Clock gene expression in the pinealocytes regulates the daily profile of Aanat expression.


Assuntos
Relógios Circadianos , Melatonina , Glândula Pineal , Ratos , Animais , Melatonina/metabolismo , Glândula Pineal/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/genética , Mamíferos/metabolismo
18.
J Pineal Res ; 75(1): e12885, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183291

RESUMO

Hypoxia-ischemia (HI) of the brain not only impairs neurodevelopment but also causes pineal gland dysfunction, which leads to circadian rhythm disruption. However, the underlying mechanism of circadian rhythm disruption associated with HI-induced pineal dysfunction remains unknown. The zinc finger protein repressor protein with a predicted molecular mass of 58 kDa (RP58) is involved in the development and differentiation of nerve cells. In this study, we established an HI model in neonatal rats to investigate the expression of RP58 and its role in pineal dysfunction and circadian rhythm disruption induced by HI. We demonstrated that RP58 was highly expressed in the pineal gland under normal conditions and significantly downregulated in the pineal gland and primary pinealocytes following HI. Knockdown of RP58 decreased the expression of enzymes in the melatonin (Mel) synthesis pathway (tryptophan hydroxylase 1 [TPH1], acetylserotonin O-methyltransferase [ASMT], and arylalkylamine N-acetyltransferase [AANAT]) and clock genes (circadian locomotor output cycles kaput [CLOCK] and brain and muscle ARNT-like 1 [BMAL1]), and it also reduced the production of Mel, caused pineal cell injury, and disrupted circadian rhythms in vivo and in vitro. Similarly, HI reduced the expression of Mel synthesis enzymes (TPH1, ASMT, and AANAT) and clock genes (CLOCK and BMAL1), and caused pineal injury and circadian rhythm disruption, which were exacerbated by RP58 knockdown. The detrimental effect of RP58 knockdown on pineal dysfunction and circadian rhythm disruption was reversed by the addition of exogenous Mel. Furthermore, exogenous Mel reversed HI-induced pineal dysfunction and circadian rhythm disruption, as reflected by improvements in Mel production, voluntary activity periods, and activity frequency, as well as a diminished decrease in the expression of Mel synthesis enzymes and clock genes. The present study suggests that RP58 is an endogenous source of protection against pineal dysfunction and circadian rhythm disruption after neonatal HI.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , Melatonina/metabolismo , Animais Recém-Nascidos , Fatores de Transcrição ARNTL/metabolismo , RNA Mensageiro/metabolismo , Ritmo Circadiano/fisiologia , Glândula Pineal/metabolismo , Hipóxia/metabolismo , Isquemia/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo
19.
J Mol Endocrinol ; 71(2)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37256589

RESUMO

Arylalkylamine N-acetyltransferase (AANAT), a rate-limiting enzyme in melatonin synthesis, is present in extra-pineal tissues such as the hippocampus. The hippocampal AANAT activity in amyloid ß (Aß) neurotoxicity has not been exactly defined. Adult male rats received bilateral intra-CA1 Aß administration. The hippocampus tissue sampling was performed 2, 12, and 24 h after Aß injection in the morning and night. The inflammation was monitored using tumor necrosis factor-alpha (TNF-α) immunohistochemistry. The AANAT enzyme activity and melatonin levels were measured using western blotting and high-performance liquid chromatography. The sampling in the morning vs night showed no significant differences in the AANAT activity. The Aß increased the area of TNF-α positive staining 24 h after injection, which indicated the induction of an inflammatory context. It was accompanied by a significant reduction in AANAT activity and hippocampal melatonin. A reverse correlation was also detected between TNF-α and AANAT activity in the 24-h group. The TNF-α positive area was significantly increased in the 24-h group as compared to the 12-h group. Data showed that inflammatory processes began 12 h after the Aß injection and augmented 24 h later. In the second experiment, the impact of Aß injection on hippocampus AANAT activity was examined in the pinealectomized (PIN×) animals. The PIN× per se did not affect the hippocampal AANAT and melatonin levels. However, there was a significant decrease in hippocampal melatonin in the PIN×+Aß group. The findings suggest the accompanying hippocampal inflammatory context and AANAT enzyme activity reduction in early stages after Aß administration. Understanding the underlying mechanism of the decreased AANAT activity may suggest new treatment strategies.


Assuntos
Melatonina , Glândula Pineal , Ratos , Masculino , Animais , Melatonina/farmacologia , Arilalquilamina N-Acetiltransferase/metabolismo , Peptídeos beta-Amiloides , Fator de Necrose Tumoral alfa , Glândula Pineal/metabolismo , Hipocampo/metabolismo , Ritmo Circadiano
20.
Open Vet J ; 13(2): 206-217, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37073240

RESUMO

Background: The epiphysis cerebri (pineal gland) is a small-sized, photo neuroendocrine organ in the brain of most vertebrates. Their effect is through secretion of melatonin, a serotonin-derived hormone which is stimulated by darkness and inhibited by light and modulates the circadian rhythm; light and dark cycle like a biological clock, sleep patterns (sleep-wake cycle), and sexual development. Aim: This study aimed to identify and differentiate the different cell types filling the pineal gland parenchyma of mature male sheep. Methods: Pineal glands were collected and sliced parasagitally then processed histologically for light and electron microscopic examinations. Results: Two main cell types; pinealocytes and astrocytes were recognized within the gland parenchyma. Pinealocytes were the chief parenchymatus cells that occupied the largest volume of the gland and were classified according to the nuclear pictures (activity status) into two subtypes; pinealocytes I (pale subtype, active) and II (dark subtype, inactive). Astrocyte neuroglial cells had cytoplasmic processes which form a huge supportive framework between the pinealocytes and clarified two types; type I were elongated cells with elongated snake shaped nucleus and type II were smaller in size, with oval nuclei. Another marginal cell type was identified as a neuron-like cell which appeared larger in size than others and distributed sporadically, has eccentric oval nucleus with prominent nucleoli and single, long cytoplasmic process that branched at its terminal forming T-shaped process looks like pseudo unipolar neuron. Moreover, aggregations of pigment granules were markedly observed in the intercellular spaces and also near the blood capillaries. With transmission electron microscope (TEM) a special characteristic feature of pinealocytes; synaptic ribbons were recognized that appeared as bands of electron-dense material with several synaptic spherules; vesicles adjacent to its surface helping in the multivesicular release. Conclusion: The gland parenchyma revealed two main cell types; pinealocytes and astrocytes. Each one was subdivided into two subtypes; I and II. The first one was classified according to their nuclear pictures (activity status) and the second one was according to their shape, size, and cytoplasmic processes. Other cell types were also identified as neuronal and pigmented-like cells in the pineal matrix.


Assuntos
Glândula Pineal , Animais , Masculino , Ovinos , Glândula Pineal/metabolismo , Astrócitos , Microscopia Eletrônica/veterinária , Neurônios , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...